
Design and Development of a Non-Linear 
Controller for Quadrotor type Unmanned Aerial 

Vehicle

Saptadeep Debnath and Mary Lourde R 
Department of Electrical and Electronics Engineering, 

BITS Pilani Dubai Campus,  
Dubai, UAE 

Email: f20140061d@alumni.bits-pilani.ac.in, marylr@dubai.bits-pilani.ac.in
 
 

Abstract — This paper presents non-linear modelling and 
simulation of a quadrotor type Unmanned Aerial Vehicle (UAV), 
and development of a controller for the same. The nonlinearities 
in the system along with the equations defining the same are 
studied extensively. The quadrotor is modelled using the 
mathematical equations in the MATLAB-Simulink environment, 
with each dynamic block governed by the corresponding 
equations. Experiments are carried out to further evaluate the 
coefficients of the proposed nonlinear controller for the quadrotor 
system and its performance evaluated.   
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I.  INTRODUCTION  

An autonomous vehicle is capable of making its own 
decisions on every aspect, which in turn is based on a set of 
protocols. For a system to be autonomous, it has to be robust in 
an unknown environment. There is extensive research being 
done on linear control of the Unmanned Aerial Vehicles (UAVs) 
in an unknown environment, using different control techniques.  

A generic quadcopter has an ‘X’ (the letter X) or a ‘+’ (plus) 
shape. This type of shape helps it in maintaining symmetry in a 
plane. Four motors along with electronics speed controllers 
(ESCs), at the end of each of the arms, are powered by a portable 
battery, which provides the required thrust to make the 
quadcopter fly. As there are six ranges of motion (i.e. forward, 
backward, left, right, up and down), but is controlled by only 
four motors, this system is generally referred to as an under 
actuated system. 

Generally for the ease of computation the system is 
considered as linear [1]. But by the use of modern non-linear 
control theory, the performance of the system can be enhanced. 
Basic model of the quadcopter can be defined in the 6 ranges of 
motion as discussed earlier, where (x, y, z) are calculated on the 
center of mass of the vehicle. The Euler angles, (ψ, θ, φ) defines 
the orientation of the system. Using these, the system can be 
defined using the Euler-Lagrange equation. The mathematical 
model gives a backbone to the further research on this topic. 
Though widely assumed linear, the nonlinearities can surely be 
added to the developed mathematical model, as explained in [2]. 
Essentially, three types of motion need to be controlled, namely 
attitude (roll, pitch and yaw), altitude (z) and position (x and y).  

Proportional-integral-derivative (PID) is the most commonly 
used controller, for this type of system. A benefit of using this 
type of controller is that, it does not rely on the accurate model 
of the quadrotor [3]. In a PID loop, the errors in the loop are 
compensated by a three-stage function, directly dealing with the 
error (proportional), dealing with the error accumulated over 
time (integral) and compensating for the future errors in the 
system (derivative). Some other controllers include sliding mode 
controller [4], backstepping method [5], nonlinear H∞ controller 
[6], and model predictive controller [7]. 

The MATLAB-Simulink environment is used to model the 
quadrotor using mathematical equations taking in factor the 
nonlinearity of the system, and simulate different experiments to 
calculate the coefficients of the PD controller. 

II. QUADCOPTER DYNAMICS 

A. Nonlinearities in the System 

The paper presents a non-linear control system for a 
quadrotor with the following nonlinearities. The system is not 
considered as a point object, thus the object is presumed to have 
resistance in a fluid environment and have a drag coefficient. 
The vehicle is assumed to have a moment of inertia along the 
three axes, symmetrical along the x and y axes, and have the 
center of mass at the geometric center of the vehicle. 
Additionally, the propellers are assumed rigid so as to provide 
equal thrust to all the motors, and the thrust is assumed to be 
proportional to the square of the propellers’ speed. 

B. Dynamic Modelling 

 

Fig. 1. Inertial and Body frame of a plus ‘+’ type quadrotor 



The quadcopter design as represented in Fig .1, demonstrates 
the torques, angular velocities, forces and the motion in the 
different directions (x, y, z) & along the different angles (φ, θ, 
ψ). [9] 

A rotation matrix (R) is used which relates the body frame to 
the inertial frame of the system. A vector 𝑣⃗ in the body frame is 
represented as R𝑣⃗ in the inertial frame. Rotation matrix is a 
powerful tool as it can negate the effect of roll, pitch and yaw in 
the body frame, and represent the orientation in the inertial 
frame. (𝐶௫ = Cos x, 𝑆௬  = Sin y) 

𝑅 =  ቎

𝐶ట𝐶ఏ 𝐶ట𝑆ఏ𝑆థ − 𝑆ట𝐶థ 𝐶ట𝑆ఏ𝐶థ + 𝑆ట𝑆థ

𝑆ట𝐶ఏ 𝑆ట𝑆ఏ𝑆థ + 𝐶ట𝐶థ 𝑆ట𝑆ఏ𝐶థ − 𝐶ట𝑆థ

−𝑆ఏ 𝐶ఏ𝑆థ 𝐶ఏ𝐶థ

቏   (1) 

As discussed previously, the quadcopter is assumed 
symmetrical in shape. Two of the arms align with the x-axis and 
the other two with the y-axis. Therefore, the moment of inertia 
across x-axis is same as of y-axis (𝐼௫௫ =  𝐼௬௬). The inertial 
matrix can be denoted as, 

𝐼 =  ቎

𝐼௫௫ 0 0
0 𝐼௬௬ 0

0 0 𝐼௭௭

቏    (2) 

The angular velocities of the individual motors produce a 
torque denoted as 𝜏ெ೔ , where ‘i’ specifies the motor numbers. 
The torques produced by the motors depend on two major non-
linear components, the drag factor ‘d’ and the inertia moment of 
the rotors IM.  

𝜏ெ೔ = 𝑑 𝜔௜
ଶ +  𝐼ெ 𝜔̇௜            (3) 

Apart from the torques produced by the individual motors, 
three additional torques are also produced with reference to the 
body frame. The torques corresponds to the body frame angles, 
namely roll, pitch and yaw. 

𝜏஻ =  ൥

𝜏థ

𝜏ఏ

𝜏ట

൩ =  ቎

𝑙 𝑏 (−𝜔ଶ
ଶ +  𝜔ସ

ଶ)

𝑙 𝑏 (−𝜔ଵ
ଶ +  𝜔ଷ

ଶ)

∑ 𝜏ெ೔ 
ସ
௜ୀଵ

቏           (4) 

The four motors provide a thrust 𝑇, which allows the 
quadcopter to achieve a certain change in z-direction in the body 
frame. 

𝑇 = 𝑏 (𝜔ଵ
ଶ + 𝜔ଶ

ଶ +  𝜔ଷ
ଶ +  𝜔ସ

ଶ)           (5) 

The dynamics of the quadcopter discussed above are further 
used to derive the acceleration of the system along the x, y and 
z-axes using the Newton-Euler equations.  

𝑚𝑎̈ = 𝐺 + 𝑅𝑇஻             (6) 

൥
𝑥̈
𝑦̈
𝑧̈

൩ =  
்

௠
 ቎

𝐶ట𝑆ఏ𝐶థ + 𝑆ట𝑆థ

𝑆ట𝑆ఏ𝐶థ − 𝐶ట𝑆థ

𝐶ఏ𝐶థ

቏ − 𝑔 ൥
0
0
1

൩           (7) 

In this representation, 𝑎̈ is a column matrix with the 
acceleration values across the x, y and z-axes. The gravitational 
constant 𝐺 when added with the amount of thrust produced in 
the inertial frame, i.e. taking a product of the rotation matrix 𝑅 
with the thrust in the body frame 𝑇஻  gives the total forces in the 
x, y and z-axes. Similar to the acceleration calculation in the x, 
y and z-axes, the acceleration for roll, pitch and yaw is denoted 
as follows. 

቎

𝜙̈

𝜃̈
𝜓̈

቏ =  ൦

൫𝐼௬௬ − 𝐼௭௭൯𝜃̇𝜓̇ 𝐼௫௫⁄

(𝐼௭௭ − 𝐼௫௫)𝜙̇𝜓̇ 𝐼௬௬ൗ

൫𝐼௫௫ − 𝐼௬௬൯𝜃̇𝜙̇ 𝐼௭௭⁄

൪ + 𝐼ெ ቎
𝜃̇ 𝐼௫௫⁄

𝜙̇ 𝐼௬௬ൗ

0

቏ 𝜔୻ +  ቎

𝜏థ 𝐼௫௫⁄

𝜏ఏ 𝐼௬௬⁄

𝜏ట 𝐼௭௭⁄

቏ (8) 

Where,  

𝜔୻ =  𝜔ଶ + 𝜔ସ − 𝜔ଵ − 𝜔ଷ            (9) 

III. CONTROLLER DESIGN 

A. Attitude Control 

A PD controller is used for this research as the system is 
assumed to have less erratic disturbances [9]. 

𝜏థ = [𝐾௉,థ(𝜙ௗ − 𝜙) +  𝐾஽,థ൫𝜙̇ௗ − 𝜙̇൯]𝐼௫௫, 

𝜏ఏ = [𝐾௉,ఏ(𝜃ௗ − 𝜃) +  𝐾஽,ఏ൫𝜃̇ௗ − 𝜃̇൯]𝐼௬௬,          (10) 

𝜏ట = [𝐾௉,ట(𝜓ௗ − 𝜓) +  𝐾஽,ట൫𝜓̇ௗ − 𝜓̇൯]𝐼௭௭, 

The corrected angular velocities can now be calculated from 
(4) and (5) with the result from (10) and is given by (11). 
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B. Position Control 

Position control of the quadrotor is achieved by changing the 
four control inputs to the quadcopter, i.e. the angular velocities 
of the four motors. This control loop is generally referred to as 
the outer control loop, and implemented on an onboard/offboard 
computer.  

𝑋ௗ = 𝐾௉,௫(𝑥ௗ − 𝑥) +  𝐾஽,௫(𝑥̇ௗ − 𝑥̇), 

𝑌ௗ = 𝐾௉,௬(𝑦ௗ − 𝑦) + 𝐾஽,௬(𝑦̇ௗ − 𝑦̇),             (12) 

𝑍ௗ = 𝐾௉,௭(𝑧ௗ − 𝑧) +  𝐾஽,௭(𝑧̇ௗ − 𝑧̇), 



The approach for trajectory control is to calculate the 
required angular velocities to move the quadcopter from the 
current position to a desired position. The desired angular 
velocities can be calculated by (11), using the thrust and the 
torque values. The torque value are in turn calculated by (10). 
To correlate both the equations we require a relation between the 
desired values of roll, pitch and yaw with the desired values of 
x, y and z, which is given in (13) 

𝜙ௗ = arcsin ൬
௑೏ௌഗି௒೏஼ഗ

௑೏
మା௒೏

మା(௓೏ା௚)మ൰, 

𝜃ௗ = arcsin ቀ
௑೏஼ഗା௒೏ௌഗ

௓೏ା௚
ቁ,               (13) 

𝑇 = 𝑚 [𝑋ௗ൫𝐶ట𝑆ఏ𝐶థ + 𝑆ట𝑆థ൯ + 𝑌ௗ൫𝑆ట𝑆ఏ𝐶థ − 𝐶ట𝑆థ൯ + (𝑍ௗ + 𝑔)(𝐶ఏ𝐶థ)], 

IV. EXPERIMENTAL SETUP 

Initially, the desired position coordinates are fed to a PD 
controller. The controlled input is then converted to the desired 
roll, pitch, yaw and the thrust value. The desired roll, pitch and 
yaw values then go through a PD controller, which is the inner 
control loop, which was described in the previous section. The 
corresponding torque values in addition with the thrust is used 
to calculate the angular velocities of the individual motors. The 
angular velocities with the help of the calculated roll, pitch, and 
yaw values are used to then find the current x, y and z 
coordinates. The simulations for verifying the model and 
calculating the PD coefficient values are carried on a MATLAB 
environment. Fig. 3 shows the overall Simulink block which 
consists of two main subsystems, with one output terminal.  

The system is fed with three sets of input variables: initial 
attitude values, system values and the final position values. The 
initial values and the rate of change of x, y, z, roll, pitch and yaw 
are fed in the initial attitude values; the default values are chosen 
as shown in Table 1. The default values shown in Table 2 are 
given as input for the system values, which comprise of 
quadrotor mass, thrust factor, drag factor, rotor inertia, length of 
each chord and the moment of inertia along each axes. The 
system values are chosen so as to replicate a real life quadrotor 
system. The initial attitude values and system values remain 
constant throughout the simulation process. The final position 
values are varied in the different simulations, so as to tune a 
specific set of values. 

 

Fig. 2. Interactions between different physical quantities 

 

 

Fig. 3. Complete Simulink Block Diagram 

 The first dynamic block is responsible for converting the 
desired position, with the help of the current state values and the 
initial system variables, to the required omega (RPM) values for 
each of the four motors. As described in section 3, there are two 
levels of control mechanism in this system; the inner control 
loop and the outer control loop. The attitude control block is 
modelled based on (10). This block converts the desired roll, 
pitch and yaw values to their corresponding torque values. The 
torque and the thrust obtained is then parsed into the next block, 
which then calculates the equivalent omega values, according to 
(11). The outer loop controls the position values (i.e. x, y and z). 
The position control block is defined by (12). Using the output 
obtained from this block, the required thrust, roll and pitch 
values are calculated, which are modelled by (13). 

TABLE I.  INITIAL ATTITUDE VALUES  

Parameter Value 

Initial X position (m) 1 

Initial Y position (m) 1 

Initial Z position (m) 0 

Initial Velocity in X direction (m/sec) 0 

Initial Velocity in Y direction (m/sec) 0 

Initial Velocity in Z direction (m/sec) 0 

Initial Roll Angle (deg) 0 

Initial Pitch Angle (deg) 0 

Initial Yaw Angle (deg) 0 

Initial Roll Rate (deg/sec) 0 

Initial Pitch Rate (deg/sec) 0 

Initial Yaw Rate (deg/sec) 0 

 

The individual omega values obtained from the previous 
block is further used to calculate the current states. Equations (7) 
and (8) are used to calculate the acceleration values across the 
six coordinates; i.e. x, y, z, roll, pitch and yaw. The double 
derivatives are then integrated to get the velocity values, and 
integrated further to obtain the attitude values. Finally, the 
current state values are parsed into the output block to visualize 
the values in a systematic manner. 

 

 



TABLE II.  SYSTEM SPECIFICATIONS  

Parameter Value 

Quadrotor Mass (kg) 0.468 

Quadrotor Moment of Inertia along x axis 
(kg m^2) 

0.004856 

Quadrotor Moment of Inertia along y axis 
(kg m^2) 

0.004856 

Quadrotor Moment of Inertia along z axis 
(kg m^2) 

0.008801 

Thrust Factor 0.00000298 

Drag Factor 0.000000114 

Rotor Inertia (kg m^2) 0.00003357 

V. RESULTS AND DISCUSSION 

The system contains six individual PD controllers for x, y, z, 
roll, pitch and yaw. The PD coefficients are tuned using three 
sets of experiments.  

First the z-control, or the altitude control is tuned. In this 
simulation the initial coordinates are set as [1, 1, 1] and the 
desired coordinates as [1, 1, 8]. As seen in Fig. 4(a), there is no 
change observed in the x and y axis, as was desired. 
Consequently, there is no change in either roll, pitch or yaw, 
expect for the desired increase in the coordinate value of the z-
axis, from 1 to 8. 𝐾௉,௭ and  𝐾஽,௭ are tuned in this simulation. 

In the second simulation, the x axis is tuned. As the x-axis 
motion is solely depended on the pitch motion, so along with x 
the pitch controller is tuned. The initial coordinates are set as [1, 
1, 1] and the desired coordinates as [8, 1, 1] which results in the 
forward motion of the quadrotor. As expected there is a desirable 
change in the x-axis, as shown in the Fig. 4(c). In addition to that 
there are minute disturbances observed in the y and z-axis, which 
attain the steady state value at the end of the simulation. 𝐾௉,௫, 
𝐾஽,௫, 𝐾௉,ఏ and 𝐾஽,ఏ  are tuned during this simulation.  

 

Fig. 4. (a) Position and (b) Attitude graph for simulation 1, (c) Position and 
(d) Attitude graph for simulation 2, (e) Position and (f) Attitude graph for 
simulation 3; x, y, and z values are plotted independently in the position graph, 
and roll, pitch and yaw values are plotted in the attitude graph. [The x-axis 
denotes the simulation time (0 - 40 sec) and y-axis denotes the coordinate points 
in-case of position graph and radians in-case of attitude graphs] 

TABLE III.  TUNED CONTROLLER PARAMETERS  

Parameter Value Parameter Value 

𝐾௉,௫ 0.0058 𝐾௉,ఏ 0.000256 

𝐾஽,௫ 0.1866 𝐾஽,ఏ 0.0134 

𝐾௉,௬ 12.828 𝐾௉,థ 2.477 

𝐾஽,௬ 27.984 𝐾஽,థ 0.94 

𝐾௉,௭ 0.21 𝐾௉,ట 234.031 

𝐾஽,௭ 0.976 𝐾஽,ట 68.748 

 

The final simulation is carried out for tuning the y-axis 
motion. As y-axis motion is defined by the roll motion, the 
controller for roll angle is also controlled in the process. The 
initial coordinates for the simulation as taken as [1, 1, 1] and the 
desired coordinates as [8, 8, 8]. From the Fig. 4(e), it can be 
observed that the desired coordinate values for x, y and z are 
achieved by the system. In addition to that the changes in the 
roll, pitch and yaw angles also negate down to zero when the 
simulation stops. During this simulation the yaw angle is also 
tuned, which gives 𝐾௉,௬, 𝐾஽,௬, 𝐾௉,థ, 𝐾஽,థ, 𝐾௉,ట and 𝐾஽,ట. 

VI. CONCLUSION 

This research is presented in two folds. The first part deals 
with the basics of the quadcopter dynamics, the study of 
different types of nonlinearities in the system and the equations 
defining the same. Further, the system dynamics and the control 
architecture is modelled in the Simulink platform as separate 
subsystems. A PD controller is used to control the six 
coordinates as defined in a quadrotor system. This includes a two 
level control system, an inner control loop and an outer control 
loop.  

The latter half deals with the simulation results from the 
Simulink block, by feeding in the desired values and observing 
the anticipated motion. A three step simulation is carried out to 
tune the six control blocks. The three motions being the upward 
motion, forward motion and a diagonal motion (i.e. a change in 
all the three coordinates). The system thus designed responds 
properly for a localized coordinate system, as the parameters are 
tuned for a localized coordinate system. This design serves as an 
ideal non-linear simulation model for a plus ‘+’ configured 
quadcopter.  
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